lunes, 29 de abril de 2013

explicación Leyes de la termodinámica

Primera ley de la Termodinámica: no puedes ganar

No puedes conseguir algo a partir de nada porque la materia y la energía se conservan. Pongamos el ejemplo de la máquina de vapor de nuevo. Si quemo carbón para obtener un trabajo (por ejemplo, el tren se mueve), la energía total producida será como máximo igual al calor aportado. Pero no puedo hacer que el tren se mueva sin quemar tener una fuente de energía, en este caso el calor producido al quemar el carbón. Vamos, que el tren no va a echar a andar por sí mismo. Siendo un poco más estrictos podríamos decir:
En un sistema cerrado en el que no se produzca intercambio de calor (sistema adiabático) que evoluciona de un estado A a otro B, el trabajo realizado no depende del camino elegido ni del tipo de trabajo.

Segunda ley de la Termodinámica: no puedes empatar

No puedes volver al mismo estado de energía porque la entropía siempre aumenta. La entropía es una propiedad de un sistema relacionada con el desorden y que siempre tiende a aumentar (el desorden aumenta). Si sacas la ropa de los cajones, la tiras por la habitación y te vas, no esperes cuando vuelvas que la ropa haya entrado sola en el cajón, siempre estará desordenada. La entropía aumenta amigo. Por cierto, este es el principal argumento que usó para excusar el desorden habitual en mis armarios, de ahí el ejemplo.
Si volvemos a la analogía del tren esta ley explicaría que no se pudiese convertir todo el calor obtenido del carbón en trabajo, habrán pérdidas. Y también nos dice que si intentamos transformar de nuevo el movimiento del tren en calor, también habrán pérdidas. Seré de nuevo ligeramente más estricto:
Los valores que tomarán los parámetros que definen un sistema termodinámico cerrado en un sistema de equilibrio, siempre maximizarán el valor de una magnitud característica denominada entropía y que estará en función de los mismos.

Tercera ley de la Termodinámica: no puedes dejar el juego

Porque no se puede alcanzar el cero absoluto y para que el juego terminase deberíamos llegar a ese valor en el que deja de haber entropía. El cero absoluto está relacionado con la ausencia total de energía, es un estado en el que las partículas que componen un sistema dejan incluso de vibrar. Una definición sería:
No se puede alcanzar el cero absoluto por ningún procedimiento que implique un número finito de pasos

A pesar del conocimiento de las implicaciones de estas leyes, las personas con nuestro comportamiento tozudo habitual hemos tratado de crear en varias ocasiones máquinas de movimiento perpetuo que las violen, aunque con escaso éxito. ¿Conoces alguna más de las interesantes implicaciones de estas leyes?

No hay comentarios:

Publicar un comentario